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International research demonstrates that between 6% - 8% of students face very significant and persisting 
mathematical learning difficulties (MD). It is still little understood why some students experience so much 
difficulty in mastering basic mathematical concepts and skills. This researcher will argue that verbal memory 
span weaknesses have been reliably associated with MD and present research with Year 2 Queensland 
students which confirms this finding. The paper explores how verbal memory weaknesses can constrain early 
maths learning, and reports an intervention designed to circumvent these restrictions with a low-attaining 
Year 4 student.

International research studies in a number of countries have reported an incidence of 6% - 8% of students 
facing significant and persisting learning difficulties in mathematics to the extent that the students have been 
described as having a mathematical learning disability (Geary, 2004; Shalev et al., 2000). These students 
have shown an outstanding difficulty in learning basic arithmetic facts, “the major feature differentiating 
students with and without learning disabilities” (Ginsburg, 1997). Why is it that students of at least average 
intelligence, with demonstrable reasoning ability, are unable to either memorise or develop efficient strategies 
for computing basic arithmetic facts?

The question is puzzling because studies of normal mathematical development have suggested that the 
developmental shift from object counting, through to verbal thinking strategies and eventually recall or 
retrieval-based strategies to solve basic additions is based on an adaptive drive to save mental effort (Siegler 
& Shrager, 1984; Siegler, 1996). In his strategy choice model, Siegler has demonstrated convincingly that 
while children use a variety of strategies to solve addition problems, their choices of strategy are determined 
by efficiency of problem solution. Certainly, in describing the spontaneous emergence of the count-on strategy 
in 50% of 4 year olds, Resnick (1983) argued that the significant transition from the sum or count-all strategy 
to count-on strategies is an interpretative challenge because this procedure does not develop in any obvious 
way from the overt count-all strategies. The count-on strategy both reflects an important conceptual advance 
in understanding the cardinal aspect of numbers (Fuson, 1988; Steffe & Cobb, 1988) and marks a distinct 
step towards increasingly less effortful solutions of basic addition problems (Wright, Martland, Stafford, & 
Stanger, 2002).

Clearly this adaptive progression does not occur for all students (Gervasoni, 2005). Wright, Ellemor-Collins, 
and Lewis (2007) have described the ongoing difficulties that 3rd- to 4th-grade low-attaining students have in 
moving from inefficient count-by-ones strategies to a range of derived facts and recall strategies. An important 
consequence of a persisting reliance on count-by-ones strategies is that students may fail to develop a concept 
of numbers as composite units which underlies a facile and flexible ability to decompose and recompose 
numbers to solve both basic and more complex mental computations (Fuson, 1988; Steffe & Cobb, 1988; 
Gray & Tall, 1994).

In trying to explain this impasse, one cognitive characteristic that has been consistently associated with 
mathematical learning difficulties is a weakness in working memory capacity (Geary et al., 1991; Siegel 
& Ryan, 1989; Swanson & Siegel, 2001). Baddeley’s (1986) working memory model, stressing the time-
limited duration of information stored and processed in this short term memory system, provides a useful 
framework for considering failures of memorisation. Geary (2004) concluded that even in simple arithmetic, 
the contribution of cognitive mechanisms to the problem-solving characteristics of MD students was not fully 
understood, and there was a need for future research to develop intervention techniques for these students.

This paper reports two facets of the author’s research designed to examine these questions: (1) a comparison 
of the verbal memory spans of children of low-attaining and normally-achieving Year 2 students, (2) an 
intervention designed for a low-attaining Year 4 student which took account of his low verbal memory span 
and the cognitive memory load of solving basic additions.
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Method

1. Verbal Memory Span

As part of a larger study exploring early indicators of mathematical learning difficulties, the researcher 
undertook a comprehensive assessment battery of the mathematical, memory and processing skills of 68 
students in three Year 2 classes in metropolitan Brisbane, Queensland. The children were aged from 6.4 to 7.8 
years (mean 7.1 years). There were 30 girls and 38 boys.

A subset (n = 17) of students was identified as at risk of early mathematical learning difficulties, determined 
by a state-wide administered diagnostic process called The Year 2 Diagnostic Net – Numeracy (Education 
Queensland, 1997). The Year 2 Net (Numeracy) assesses students’ competency on key indicators along a 
developmental continuum, in the areas of Counting and Patterning, Number Concepts and Numeration, 
Operations and Computation, and Working Mathematically. Of particular relevance to this paper, students 
are expected to use the count-on strategy effectively and to have mastered some basic addition facts by 
the middle of Year 2. Ten of the Net students were identified by their class and learning support teachers 
as needing intensive learning support (Intensive Net). This paper presents t-test comparisons between the 
normally achieving and Net students on one measure of verbal memory, the Digit Span task. The mean 
Highest Forwards and Highest Backwards spans refer to the longest span of digits a student could repeat 
accurately forwards or backwards respectively on a single trial.

Results

There were significant differences in verbal memory capacity of the Net, Intensive Net and normally achieving 
students, as measured on the Digit Span task (Table 1). While the mean Highest Forwards span for the 
normally achieving (NA) students was 4.95 (SD = .925), the Net students showed a significantly lower mean 
of 4.29 (SD = .686): t (58) = -2.659, p < 0.05, and Intensive Net an even lower mean of 4.0 (SD = .471): t(51) 
= -3.150, p < 0.01. There were no significant differences in the mean Highest Backwards span results of the 
groups.

If we compare these results with data reported from the WISC-III standardisation samples (Wechsler, 1991), 
the mean for the Year 2 NA students is consistent with the mean Highest Forwards span of WISC-III 7 year-
olds (mean = 4.98, SD = 1.03). In contrast, the results for the Intensive Net and Net students, with means of 
4.0 and 4.29 respectively, are well below the mean Highest Forwards span of WISC-III 6-year olds of 4.73, 
SD = 0.94 (Finnane, 2006a).

Table 1

Mean Highest Forwards and Highest Backwards Span on the Digit Span Tasks as a Function of Net Status

Span aIntensive Net

students

(n = 9)

Net

students

(n = 16)

Normally achieving

students

(n = 43)
Mean Highest Forwards span

SD

4.00

(.471)

4.29

(.686)

4.95

(.925)
Mean Highest Backwards span

SD

2.90

(.738)

3.00

(.612)

3.09

(.648)
Mean Digit Span SS

SD

8.50

(1.841)

9.00

(1.837)

10.6

(2.546)

Note. aIntensive Net students are a subset of the Net students.
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2. Case Study – Sam

Sam (pseudonym) was an 8-year old boy in Year 4 at the study school, referred to the researcher by his 
Learning Support teacher as he was facing difficulties in all areas of learning mathematics. Sam’s experienced 
class teacher was puzzled as she was unable to teach Sam multi-digit subtraction with MAB blocks: “He 
just couldn’t get it at all”. Sam also faced significant difficulties in learning to read, but his teacher noted his 
good oral presentation skills and aural comprehension. Previous cognitive assessment had shown that Sam 
had above average verbal and non-verbal reasoning capacity and good visual sequential memory. However, 
he had visual-motor coordination problems as measured on the Coding test (9th percentile) of the Wechsler 
Intelligence Scale for Children – Third edition (WISC-III). Sam showed poor verbal memory with a Highest 
Forwards span of 4 at the age of 8 years on Digit Span, consistent with the span shown by the Intensive Net 
students in Year 2 (Table 1).

Assessment of Sam’s mathematical abilities on a range of assessment tasks showed that he had very poor 
number sense, poor counting skills to 100, oral and written teen/ty confusions, and marked difficulty reading 
and writing operator symbols. He had been unable to master any basic arithmetic facts apart from the small 
Doubles facts.

The researcher carried out an intervention once weekly with Sam designed to build his number and quantity 
sense, to clarify his understanding of base-10 structure and address his teen/ty errors, to facilitate mastery of 
basic arithmetic facts and assist him to carry out addition and subtraction with regrouping. This paper presents 
only the phase of intervention designed to teach Sam the Ten Facts for the light that it sheds on the way in 
which low verbal working memory capacity can constrain learning and to raise for discussion the benefits of 
activities which can overcome these limitations. The intervention consisted of the following phases:

Ten Fact combinations were modelled with a Ten Frame, with Sam having the opportunity to make • 
all the combinations with two sets of different coloured counters.
Ten Facts were reinforced with a card game • Ten Snap. Each player was dealt half of the pack of cards 
and placed a card in turn upon a central pile. The game was played according to the rules of familiar 
Snap games with each player aiming to “snap” when a pair of consecutive playing cards combined 
to make ten. Players could “snap” the 10 card when it appeared, to reinforce the facts 10 + 0 = 10; 0 
+ 10 = 10, and this was one of the most enjoyable moments of the game for Sam.
Ten Snap•  was demonstrated to Sam’s father to play at home, combined with daily practice of Ten 
Facts. Sam was given practice sheets of written Ten Facts in horizontal format (1 + _ = 10; 4 + _ = 
10 etc.) with ten facts per page.
Progress was assessed by recording Sam’s speed of response on the Ten Facts and his accuracy in • 
producing combinations of ten on a Make 10 task (Finnane, 2006b). On this task students are given a 
blank page with the instruction to make the number 10 in as many different ways as they could (see 
Fig. 2).

Results

Sam quickly mastered the Ten Facts with a mean response speed of 1.8 seconds per fact after 3 weeks. This 
was in striking contrast to his pretest times of 4.5 seconds per fact. Response times between 0.96 and 1.6 
seconds were sustained over a 6-month period (Fig. 1).
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Figure 1. Sam’s total response times on Ten Facts (10 facts per page)

Discussion

Why was the intervention successful? After a long failure in mastering addition facts, Sam’s success could 
be partly due to visualizing the combinations on the Ten Frame. Importantly, Ten Snap kept Sam’s focus on 
the solution of 10 as a constant whole, while he searched for the limited number of combinations, or parts. In 
discussing MD students’ failure to learn arithmetic facts, Geary suggested an explanation whereby for slow 
counters and students with low working memory capacity, the addends could decay in working memory by 
the time they had finished carrying out their counting strategy (Geary et al., 1991). This meant a loss of the 
necessary association between the addends and solution, which gradually builds up associative strength in 
long term memory leading to recall (Siegler & Shrager, 1984). Ten Snap facilitates the associations with the 
solution 10 by actively focussing attention and promoting recognition memory of the facts. The fun aspect 
of the game and lack of penalty for missing a combination acts to minimize anxiety, a factor known to 
impact on functional working memory capacity (Ashcraft & Kirk, 2001). Make 10 provided a different, easy 
opportunity to consolidate the connections.

Another salient feature of the intervention which was facilitative for Sam could be the absence of any need to 
produce written operator symbols in either the Ten Snap game or Ten Facts sheets. This is suggested by 
Sam’s asking “Would it be all right to leave out the plus sign?” when he was completing the Make 10 
task (see Fig 2). From Sam’s confusion over operator symbols and demonstrated difficulties on the 
Coding test in reproducing the plus sign, we might assume that this request was made to minimise 
cognitive load and visual motor effort. Sam did not minimise the importance of the meaning of 
operator symbols, but chose to insert them only when necessary to convey the different operation 
involved for example, changing from addition combinations to the multiplication 1 x 10 = 10 (Fig. 2).
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Figure 2. Sam’s solutions on the Make 10 task when he asked if he could leave out the plus sign

Reading and retrieving the meaning of the operator symbols from long term memory was clearly a persisting 
difficulty for Sam. Later in the intervention, when asked to complete a sheet of 10 Plus problems, starting 
with the items 10 + 2 = _ and 10 + 8 = _, Sam asked:

S: Are these like 20 and 80?

R: not 20 and 80, just have a look there

S: oh oh.

R: what were you thinking of?

S: the times tables. Oh these are easy, I can do these ones. I don’t need help. I don’t need help!

R: ready, set, go!

Drawing symbols remained an ongoing concern for Sam and he used the same compensatory strategy later in 
the intervention to assist achieving his own goal. To demonstrate that he had taught himself the nines times 
tables, Sam said that he would write them out (Figure 3). As he prepared himself, telling me that he would 
write out up to the 12 x 9 fact, Sam explained that he would take a step to avoid getting confused.

S: I’m gonna do it up to 12

R: can you?

S: and the last one is 108

R: ok

S: now I’m ready. I just need to do the dots.

R: what are the dots?

S: just so I don’t get mixed up. Ok, so 18, this one’s 27, and 36, 5 times 9 is 45, 6 times 9 is 54, 7 times 9 is 
63, 8 times 9 is 72, 9 times 9 is 81, 10 times 9 is 90, 11 times 9 is 99, 12 times 9 is 108, are all of them right?
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Figure 3. Sam’s 9x table with minimal use of symbol

The beneficial effects of Sam automatising the Ten Facts had not only given him the confidence to set himself 
a goal at his grade level in mastering the 9 times tables, but led to a spontaneous interest in partitioning 
numbers which had not been apparent earlier on the Make 10 activity. Sam showed excitement when he 
suddenly thought of a new way to respond to what was now a routine task:

S: I did my ten facts but I did it a new way. I did three of them. 3 plus 3 plus 4 equals 10. 4 plus 4 plus 2 
equals 10. 5 plus 2 plus 2 plus 1 equals 10, and that was all of them. And instead of doing the easy way, I did 
a hard way.

R: And do you want to tell us the easy way, what do you mean by that?

S: Well, it’s the easy way to do it - like 9 plus 1, but I wanted to try to do it a hard way.

Recalling basic facts which had been all but impossible for Sam at the beginning of Year 4 had become “the 
easy way”. Sam’s perception of known facts as “easy” resonates well with information processing models of 
automatised responses as involving minimal if any cognitive resources.

At a later date, Sam showed that his partitioning skills were not restricted to the Ten Facts which he had 
automatised, but had a broader application. After he had hesitated at 8+8 when working on large Doubles 
facts, the researcher had suggested that Sam could check when he felt unsure by using an up to ten strategy, 
that is, 8 + 8 is the same as (8 + 2) + 6 or 10 + 6. The aim here was to illustrate to Sam another use of his 
known Ten Facts and to encourage partitioning. Sam was interested and responded by asking “Could I do 16 
another way?” He made several interesting combinations, with obvious enjoyment (Fig. 4).
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Figure 4. Sam’s self-initiated combinations to make 16

It was notable that Sam took pleasure in representing not only combinations that reflected his previous success 
in solving 9 Plus, 10 Plus, and large Doubles problems, but also combinations that reflected his emerging 
interest in partitioning numbers, and in turn his conceptual understanding of numbers as composite units.

Conclusion

Baddeley’s (1986) working memory model offers a helpful framework for understanding and addressing 
surprising constraints to early mathematical problem solving in children with otherwise good reasoning 
abilities. While their normally achieving peers move along a predictable trajectory of increasingly more 
efficient strategies for solving basic additions, culminating in effortless retrieval of basic addition facts, 
students with MD typically remain caught in a cycle of persisting slow, effortful, and error-prone count-by-
one strategies.

Research with 6- to 7-year old students caught in the Queensland Year 2 Net demonstrated that the students 
needing intensive intervention had significantly lower verbal memory spans than students achieving expected 
mathematical milestones. This may have left them vulnerable to continuing to depend on their fingers to 
keep track of their counting, unable to manage the cognitively demanding double count verbal strategies in 
working memory.

An intervention designed for a Year 4 student showing poor counting fluency, low memory span and minimal 
known facts resulted in sustained memorisation of Ten Facts. In turn, automatisation led to increased student 
autonomy in number exploration and spontaneous goal setting for further basic fact mastery. The activities 
chosen focussed his attention on part-whole relationships, and acknowledged the complex retrievals necessary 
in carrying out what may appear to be simple additions. Future intervention research needs to further identify 
and address the multiple areas where MD students may be facing retrieval difficulties.
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